Molecular Size Dependency of Water Macromolecule Exchange Induced Frequency Shift

نویسندگان

  • K. Zhong
  • K-H. Smalla
  • A. Brensing
چکیده

Introduction: A recent study suggested that water macromolecule exchange (WME) processes can contribute to the in vivo gray matter (GM) and white matter (WM) contrast in high field phase imaging [1]. Due to the complex nature of macromolecule-water interaction, bovine serum albumin (BSA) was used as a model system to demonstrate this effect. It is assumed that the WME interaction depends on the macromolecule size, conformation, and the surrounding chemical environment. The goal of this work was to study systematically the WME shift abilities of several proteins with different molecular weight (Mw) under neutral pH and to evaluate the possible relationship between WME shifts of different macromolecules and their potential contributions to in vivo phase contrast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

The molecular basis for gray and white matter contrast in phase imaging

Direct magnetic resonance phase images acquired at high field have been shown to yield superior gray and white matter contrast up to 10-fold higher compared to conventional magnitude images. However, the underlying contrast mechanism is not yet understood. This study demonstrates that the water resonance frequency is directly shifted by water-macromolecule exchange processes (0.040 ppm/mM for b...

متن کامل

Investigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system

Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...

متن کامل

Effect of particle size on salt-induced diffusiophoresis compared to Brownian mobility.

For ternary polymer-salt-water systems at low polymer concentration (0.5%, w/w), we have experimentally investigated the effect of polymer size on polymer diffusiophoresis (i.e., polymer migration induced by a salt concentration gradient) and salt osmotic diffusion (i.e., salt migration induced by a polymer concentration gradient). Specifically, Rayleigh interferometry was employed to measure t...

متن کامل

Effect of the Interparticle Interactions on Adsorption-Induced Frequency Shift of Nano-beam-Based Nanoscale Mass-Sensors: A Theoretical Study

It is well-known that the Interparticle interactions between adsorbates and surface of an adsorbent can affect the surface morphology. One of the consequences of this issue is that the resonant frequency of a nanoscale resonator can be changed due to adsorption. In this study we have chosen a cantilever-based nanoscale mass-sensor with a single nanoparticle at its tip. Using the classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008